计算方法数值积分

本文最后更新于:2024年3月18日 凌晨

计算方法数值积分

梯形公式

算法

Newton-Cotes公式

算法

复合求积

算法

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class 复合梯形公式 {
public static void main(String[] args) {
double Y = Trapezoid(2, 3, 800);
System.out.println("计算结果为:" + Y);
System.out.println("精确解为:" + fx());
System.out.println("绝对误差为:" + Math.abs(Y - fx()));
}

static double Trapezoid(double a, double b, double n) {
double Y = 0;
double h = (b - a) / n;
Y += f(a) + f(b);
for (int i = 1; i < n; i++) {
Y += 2 * f(a + h * i);
}
Y *= h / 2;
return Y;
}

static double f(double x) {
double y = 1.0 / (x * x - 1);
return y;
}

static double fx() {
return (Math.log(2) - Math.log(3)) / -2;
}
}

变步长求积

算法

龙贝格积分

算法

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
public class 龙贝格积分 {
public static void main(String[] args) {
double Y = romberg(2, 3, 5e-8);
System.out.println("计算结果为:" + Y);
System.out.println("精确解为:" + fx());
System.out.println("绝对误差为:" + Math.abs(fx() - romberg(2, 3, 5e-5)));
}

static double f(double x) {
double y = 1.0 / (x * x - 1);
return y;
}

static double fx() {
return (Math.log(2) - Math.log(3)) / -2;
}

static double romberg(double a, double b, double eps) {
int n = 1, k;
double h = b - a, x, temp;
double T1, T2, S1 = 0, S2, C1 = 0, C2, R1 = 0, R2;
T1 = (b - a) / 2 * (f(a) + f(b));
while (true) {
temp = 0;
for (k = 0; k <= n - 1; k++) {
x = a + k * h + h / 2;
temp += f(x);
}

T2 = (T1 + temp * h) / 2;
if (Math.abs(T2 - T1) < eps) return T2;
S2 = T2 + (T2 - T1) / 3;
if (n == 1) {
T1 = T2;
S1 = S2;
h /= 2;
n *= 2;
continue;
}
C2 = S2 + (S2 - S1) / 15;
if (n == 2) {
C1 = C2;
T1 = T2;
S1 = S2;
h /= 2;
n *= 2;
continue;
}
R2 = C2 + (C2 - C1) / 63;
if (n == 4) {
R1 = R2;
C1 = C2;
T1 = T2;
S1 = S2;
h /= 2;
n *= 2;
continue;
}
if (Math.abs(R2 - R1) < eps) return R2;
R1 = R2;
C1 = C2;
T1 = T2;
S1 = S2;
h /= 2;
n *= 2;
}
}
}

例题